Verify the COBRA Toolbox
Authors: Ronan Fleming, Leiden University
Reviewers:
MATERIALS - EQUIPMENT SETUP
Please ensure that all the required dependencies (e.g. , git and curl) of The COBRA Toolbox have been properly installed by following the installation guide here. PROCEDURE
Check available optimisation solvers
At initialisation, one from a set of available optimisation solvers will be selected as the default solver. If Gurobi is installed, it is used as the default solver for LP, QP and MILP problems. Otherwise, the GLPK solver is selected by for LP and MILP problems and QPNG is selected for QP problems. Check the currently selected solvers with:
changeCobraSolver
Defined solvers are:
CBT_LP_SOLVER: glpk
CBT_MILP_SOLVER: glpk
CBT_QP_SOLVER: qpng
ANTICIPATED RESULTS
A list of solvers assigned to solve each class of optimisation solver is returned.
CRITICAL STEP
A dependency on at least one linear optimisation solver must be satisfied for flux balance analysis.
Verify a basic installation of the COBRA Toolbox
Test if flux balance analysis works
testFBA
Testing flux balance analysis using glpk ...
>> Optimal minimum 1-norm solution
BiomassEcoli 0.9219
EX_co2(e) 21.78
EX_glc(e) -10
EX_h2o(e) 41.29
EX_h(e) 8.428
EX_nh4(e) -9.851
EX_o2(e) -19.93
EX_pi(e) -0.8405
EX_so4(e) -0.2149
>> Optimal solution on fructose
BiomassEcoli 0.9219
EX_co2(e) 21.78
EX_glc(e) -10
EX_h2o(e) 41.29
EX_h(e) 8.428
EX_nh4(e) -9.851
EX_o2(e) -19.93
EX_pi(e) -0.8405
EX_so4(e) -0.2149
>> Optimal anaerobic solution
>> Optimal ethanol secretion rate solution
Done.
testSolveCobraLP
Running dummyModel with solveCobraLP using glpk ...
> [glpk] Optimality condition (1) in solveCobraLP satisfied.
> [glpk] Optimality condition (2) in solveCobraLP satisfied.
> [glpk] Optimality condition (1) in solveCobraLP satisfied.
> [glpk] Optimality condition (2) in solveCobraLP satisfied.
Original LP has 2 rows, 2 columns, 4 non-zeros
Objective value = 600
OPTIMAL SOLUTION FOUND BY LP PRESOLVER
> [glpk] Optimality condition (1) in solveCobraLP satisfied.
> [glpk] Optimality condition (2) in solveCobraLP satisfied.
Done.
Running ecoli with solveCobraLP using glpk ... Done.
Running dummyModel with solveCobraLP using pdco ...
--------------------------------------------------------
pdco.m Version pdco5 of 15 Jun 2018
Primal-dual barrier method to minimize a convex function
subject to linear constraints Ax + r = b, bl <= x <= bu
Michael Saunders SOL and ICME, Stanford University
Contributors: Byunggyoo Kim (SOL), Chris Maes (ICME)
Santiago Akle (ICME), Matt Zahr (ICME)
Aekaansh Verma (ME)
--------------------------------------------------------
The objective is linear
The matrix A is an explicit dense matrix
m = 2 n = 2 nnz(A) = 4
max |b | = 1 max |x0| = 1.0e+00 xsize = 1.0e+02
max |y0| = 0 max |z0| = 1.0e+00 zsize = 1.0e+02
x0min = 1 featol = 1.0e-06 d1max = 5.0e-04
z0min = 1 opttol = 1.0e-06 d2max = 5.0e-04
mu0 = 1.0e-01 steptol = 0.99 bigcenter= 1000
LSMR/MINRES:
atol1 = 1.0e-10 atol2 = 1.0e-15 btol = 0.0e+00
conlim = 1.0e+12 itnlim = 20 show = 0
Method = 1 (1 or 11=chol 2 or 12=QR 3 or 13=LSMR 4 or 14=MINRES 21=SQD(LU) 22=SQD(MA57))
Eliminating dy before dx
Bounds:
[0,inf] [-inf,0] Finite bl Finite bu Two bnds Fixed Free
0 0 2 2 2 0 0
[0, bu] [bl, 0] excluding fixed variables
2 0
Itn mu stepx stepz Pinf Dinf Cinf Objective nf center Chol
0 0.3 0.6 0.0 -5.9999997e+04 1.0
1 -1.0 0.756 0.756 -0.3 -0.0 -0.4 -2.6962494e+04 1 30.9 3
2 -1.0 0.078 0.078 -0.3 -0.0 -0.4 -2.5877439e+04 1 1164.7
3 -1.0 0.147 0.147 -0.4 -0.1 -0.5 -2.2098922e+04 1 143.5
4 -1.1 0.006 0.006 -0.4 -0.1 -0.5 -2.1984231e+04 1 6471.0
5 -1.1 0.014 0.014 -0.4 -0.1 -0.5 -2.1261135e+04 1 434.8
6 -1.1 0.019 0.019 -0.4 -0.1 -0.5 -1.7870918e+04 1 3621.6
7 -1.1 1.000 1.000 -16.5 -8.5 0.4 3.7050583e+06 1 305.1
8 -1.1 1.000 1.000 -17.8 -12.6 -1.0 3.6809979e+06 1 1.2
9 -2.9 0.998 0.998 -17.8 -12.7 -2.7 3.6794412e+06 1 2.1
10 -4.2 1.000 1.000 -17.8 -12.6 -4.2 3.6794068e+06 1 1.0
11 -6.2 1.000 1.000 -18.3 -13.1 -6.2 3.6794056e+06 1 1.0
Converged
max |x| = 0.010 max |y| = 38400.000 max |z| = 1728.333 scaled
max |x| = 1.000 max |y| =3840000.006 max |z| =172833.334 unscaled
PDitns = 11 Cholitns = 0 cputime = 0.0
Distribution of vector x z
[ 1e+05, 1e+06 ) 0 2
[ 1e+04, 1e+05 ) 0 0
[ 1e+03, 1e+04 ) 0 0
[ 100, 1e+03 ) 0 0
[ 10, 100 ) 0 0
[ 1, 10 ) 0 0
[ 0.1, 1 ) 2 0
[ 0.01, 0.1 ) 0 0
[ 0.001, 0.01 ) 0 0
[ 0, 0.001 ) 0 0
Elapsed time is 0.018898 seconds.
> [pdco] Optimality condition (1) in solveCobraLP satisfied.
> [pdco] Optimality condition (2) in solveCobraLP satisfied.
--------------------------------------------------------
pdco.m Version pdco5 of 15 Jun 2018
Primal-dual barrier method to minimize a convex function
subject to linear constraints Ax + r = b, bl <= x <= bu
Michael Saunders SOL and ICME, Stanford University
Contributors: Byunggyoo Kim (SOL), Chris Maes (ICME)
Santiago Akle (ICME), Matt Zahr (ICME)
Aekaansh Verma (ME)
--------------------------------------------------------
The objective is linear
The matrix A is an explicit dense matrix
m = 2 n = 2 nnz(A) = 4
max |b | = 1 max |x0| = 1.0e+00 xsize = 1.0e+02
max |y0| = 0 max |z0| = 1.0e+00 zsize = 1.0e+02
x0min = 1 featol = 1.0e-06 d1max = 5.0e-04
z0min = 1 opttol = 1.0e-06 d2max = 5.0e-04
mu0 = 1.0e-01 steptol = 0.99 bigcenter= 1000
LSMR/MINRES:
atol1 = 1.0e-10 atol2 = 1.0e-15 btol = 0.0e+00
conlim = 1.0e+12 itnlim = 20 show = 0
Method = 1 (1 or 11=chol 2 or 12=QR 3 or 13=LSMR 4 or 14=MINRES 21=SQD(LU) 22=SQD(MA57))
Eliminating dy before dx
Bounds:
[0,inf] [-inf,0] Finite bl Finite bu Two bnds Fixed Free
0 0 2 2 2 0 0
[0, bu] [bl, 0] excluding fixed variables
2 0
Itn mu stepx stepz Pinf Dinf Cinf Objective nf center Chol
0 0.3 0.6 0.0 -5.9999997e+04 1.0
1 -1.0 0.756 0.756 -0.3 -0.0 -0.4 -2.6962494e+04 1 30.9 3
2 -1.0 0.078 0.078 -0.3 -0.0 -0.4 -2.5877439e+04 1 1164.7
3 -1.0 0.147 0.147 -0.4 -0.1 -0.5 -2.2098922e+04 1 143.5
4 -1.1 0.006 0.006 -0.4 -0.1 -0.5 -2.1984231e+04 1 6471.0
5 -1.1 0.014 0.014 -0.4 -0.1 -0.5 -2.1261135e+04 1 434.8
6 -1.1 0.019 0.019 -0.4 -0.1 -0.5 -1.7870918e+04 1 3621.6
7 -1.1 1.000 1.000 -16.5 -8.5 0.4 3.7050583e+06 1 305.1
8 -1.1 1.000 1.000 -17.8 -12.6 -1.0 3.6809979e+06 1 1.2
9 -2.9 0.998 0.998 -17.8 -12.7 -2.7 3.6794412e+06 1 2.1
10 -4.2 1.000 1.000 -17.8 -12.6 -4.2 3.6794068e+06 1 1.0
11 -6.2 1.000 1.000 -18.3 -13.1 -6.2 3.6794056e+06 1 1.0
Converged
max |x| = 0.010 max |y| = 38400.000 max |z| = 1728.333 scaled
max |x| = 1.000 max |y| =3840000.006 max |z| =172833.334 unscaled
PDitns = 11 Cholitns = 0 cputime = 0.0
Distribution of vector x z
[ 1e+05, 1e+06 ) 0 2
[ 1e+04, 1e+05 ) 0 0
[ 1e+03, 1e+04 ) 0 0
[ 100, 1e+03 ) 0 0
[ 10, 100 ) 0 0
[ 1, 10 ) 0 0
[ 0.1, 1 ) 2 0
[ 0.01, 0.1 ) 0 0
[ 0.001, 0.01 ) 0 0
[ 0, 0.001 ) 0 0
Elapsed time is 0.010743 seconds.
> [pdco] Optimality condition (1) in solveCobraLP satisfied.
> [pdco] Optimality condition (2) in solveCobraLP satisfied.
--------------------------------------------------------
pdco.m Version pdco5 of 15 Jun 2018
Primal-dual barrier method to minimize a convex function
subject to linear constraints Ax + r = b, bl <= x <= bu
Michael Saunders SOL and ICME, Stanford University
Contributors: Byunggyoo Kim (SOL), Chris Maes (ICME)
Santiago Akle (ICME), Matt Zahr (ICME)
Aekaansh Verma (ME)
--------------------------------------------------------
The objective is linear
The matrix A is an explicit dense matrix
m = 2 n = 2 nnz(A) = 4
max |b | = 1 max |x0| = 1.0e+00 xsize = 1.0e+02
max |y0| = 0 max |z0| = 1.0e+00 zsize = 1.0e+02
x0min = 1 featol = 1.0e-06 d1max = 5.0e-04
z0min = 1 opttol = 1.0e-06 d2max = 5.0e-04
mu0 = 1.0e-01 steptol = 0.99 bigcenter= 1000
LSMR/MINRES:
atol1 = 1.0e-10 atol2 = 1.0e-15 btol = 0.0e+00
conlim = 1.0e+12 itnlim = 20 show = 0
Method = 1 (1 or 11=chol 2 or 12=QR 3 or 13=LSMR 4 or 14=MINRES 21=SQD(LU) 22=SQD(MA57))
Eliminating dy before dx
Bounds:
[0,inf] [-inf,0] Finite bl Finite bu Two bnds Fixed Free
0 0 2 2 2 0 0
[0, bu] [bl, 0] excluding fixed variables
2 0
Itn mu stepx stepz Pinf Dinf Cinf Objective nf center Chol
0 0.3 0.6 0.0 -5.9999997e+04 1.0
1 -1.0 0.756 0.756 -0.3 -0.0 -0.4 -2.6962494e+04 1 30.9 3
2 -1.0 0.078 0.078 -0.3 -0.0 -0.4 -2.5877439e+04 1 1164.7
3 -1.0 0.147 0.147 -0.4 -0.1 -0.5 -2.2098922e+04 1 143.5
4 -1.1 0.006 0.006 -0.4 -0.1 -0.5 -2.1984231e+04 1 6471.0
5 -1.1 0.014 0.014 -0.4 -0.1 -0.5 -2.1261135e+04 1 434.8
6 -1.1 0.019 0.019 -0.4 -0.1 -0.5 -1.7870918e+04 1 3621.6
7 -1.1 1.000 1.000 -16.5 -8.5 0.4 3.7050583e+06 1 305.1
8 -1.1 1.000 1.000 -17.8 -12.6 -1.0 3.6809979e+06 1 1.2
9 -2.9 0.998 0.998 -17.8 -12.7 -2.7 3.6794412e+06 1 2.1
10 -4.2 1.000 1.000 -17.8 -12.6 -4.2 3.6794068e+06 1 1.0
11 -6.2 1.000 1.000 -18.3 -13.1 -6.2 3.6794056e+06 1 1.0
Converged
max |x| = 0.010 max |y| = 38400.000 max |z| = 1728.333 scaled
max |x| = 1.000 max |y| =3840000.006 max |z| =172833.334 unscaled
PDitns = 11 Cholitns = 0 cputime = 0.0
Distribution of vector x z
[ 1e+05, 1e+06 ) 0 2
[ 1e+04, 1e+05 ) 0 0
[ 1e+03, 1e+04 ) 0 0
[ 100, 1e+03 ) 0 0
[ 10, 100 ) 0 0
[ 1, 10 ) 0 0
[ 0.1, 1 ) 2 0
[ 0.01, 0.1 ) 0 0
[ 0.001, 0.01 ) 0 0
[ 0, 0.001 ) 0 0
Elapsed time is 0.019409 seconds.
> [pdco] Optimality condition (1) in solveCobraLP satisfied.
> [pdco] Optimality condition (2) in solveCobraLP satisfied.
Done.
Running ecoli with solveCobraLP using pdco ... Done.
Testing model with linear constraint matrix that has 72 rows and 95 columns...
Testing testDifferentLPSolvers using cplex_direct ... Done.
Testing testDifferentLPSolvers using glpk ... Done.
Testing testDifferentLPSolvers using gurobi ... Done.
Testing testDifferentLPSolvers using ibm_cplex ... Done.
Testing testDifferentLPSolvers using matlab ... Done.
Testing testDifferentLPSolvers using mosek ... Done.
Testing testDifferentLPSolvers using pdco ... Done.
Testing testDifferentLPSolvers using quadMinos ... Done.
Testing testDifferentLPSolvers using tomlab_cplex ... Done.
Testing testDifferentLPSolvers using mosek_linprog ... Done.
Testing testDifferentLPSolvers using dqqMinos ... Done.
Summary:
time obj y(rand) w(rand) solver algorithm
1 0.009595 0.873922 0.113308 0.091665 glpk default
2 0.031681 0.873922 0.113047 0.235520 pdco default
Testing model with linear constraint matrix that has 2 rows and 2 columns...
Testing testDifferentLPSolvers using cplex_direct ... Done.
Testing testDifferentLPSolvers using glpk ... Done.
Testing testDifferentLPSolvers using gurobi ... Done.
Testing testDifferentLPSolvers using ibm_cplex ... Done.
Testing testDifferentLPSolvers using matlab ... Done.
Testing testDifferentLPSolvers using mosek ... Done.
Testing testDifferentLPSolvers using pdco ...
Step lengths too smallDone.
Testing testDifferentLPSolvers using quadMinos ... Done.
Testing testDifferentLPSolvers using tomlab_cplex ... Done.
Testing testDifferentLPSolvers using mosek_linprog ... Done.
Testing testDifferentLPSolvers using dqqMinos ... Done.
Summary:
time obj y(rand) w(rand) solver algorithm
1 0.011557 600.000000 -0.000000 -200.000000 glpk default
2 0.009231 600.000000 0.000000 -200.000000 pdco default
Testing model with linear constraint matrix that has 1 rows and 1 columns...
Testing testDifferentLPSolvers using cplex_direct ... Done.
Testing testDifferentLPSolvers using glpk ... Done.
Testing testDifferentLPSolvers using gurobi ... Done.
Testing testDifferentLPSolvers using ibm_cplex ... Done.
Testing testDifferentLPSolvers using matlab ... Done.
Testing testDifferentLPSolvers using mosek ... Done.
Testing testDifferentLPSolvers using pdco ... Done.
Testing testDifferentLPSolvers using quadMinos ... Done.
Testing testDifferentLPSolvers using tomlab_cplex ... Done.
Testing testDifferentLPSolvers using mosek_linprog ... Done.
Testing testDifferentLPSolvers using dqqMinos ... Done.
Summary:
time obj y(rand) w(rand) solver algorithm
1 0.013073 1.000000 1.000000 -0.000000 glpk default
2 0.062806 1.000000 1.000000 0.000000 pdco default
Running optimalityConditions tests in solveCobraLP using pdco ... Done.
Running optimalityConditions tests in solveCobraLP using glpk ... Done.
(Optional) Verify and test the entire COBRA Toolbox
TIMING ∼30 min
Optionally test the functionality of The COBRA Toolbox locally, especially if one encounters an error running a function. The test suite runs tailored tests that verify the output and proper execution of core functions on the locally configured system. The full test suite can be invoked by typing:
ANTICIPATED RESULTS
The test suite starts by initialising The COBRA Toolbox and thereafter, all of the tests are run. At the end of the test run, a comprehensive summary table is presented in which the respective tests and their test outcome is shown. On a properly configured system that is compatible with the most recent version of The COBRA Toolbox, all tests should pass.
TROUBLESHOOTING
If some third party dependencies are not properly installed, some tests may fail. The test suite, despite some tests failing, is not interrupted. The tests that fail are listed with a false status in the column Passed. The specific test can then be run individually to determine the exact cause of the error. If the error can be fixed, follow the tutorial on how to contribute to The COBRA Toolbox and contribute a fix.