- calcGroupStats(data, groups, statName, groupList, randStat, nRand)[source]¶
calcGroupStats Calculate statistics such as mean or standard deviation for subgroups of a population
- USAGE
[groupStat, groupList, groupCnt, zScore] = calcGroupStats (data, groups, statName, groupList, randStat, nRand)
- INPUTS
data – Matrix of data (individuals x variables)
groups – Group identifier for each individual
statName – Name of the statistic to be computed for each group: ‘mean’: mean value for group (default) ‘std’: standard deviation for group ‘median’: median for group ‘count’: sum total of variable values for group
groupList – List of group identifiers to be considered (optional, default all values occurring in groups)
randStat – Perform randomization analysis
nRand – # of randomizations
Group identifier can be either strings or numerical values
- OUTPUTS
groupStat – Matrix of group statistic values for each group and variable
groupList – List of group identifiers considered
groupCount – Number of individuals in a group
- createDeltaMatchMatrix(set1, set2)[source]¶
Create a flux difference constraint matrix for MOMA type calculations
- USAGE
A = createDeltaMatchMatrix (set1, set2)
- INPUTS
set1, set2 – input sets
- OUTPUT
A – flux difference matrix
- generateSystemConfigReport()[source]¶
Generates a configuration report of the sytem and saves it as COBRAconfigReport.log
- USAGE
generateSystemConfigReport()
- hyperlink(url, urlText, altText1, altText2)[source]¶
Converts a url to a clickable link in order to improve usability when using the MATLAB desktop environment
- USAGE
outLink = hyperlink (url, urlText, altText1, altText2)
- INPUTS
url – url address
urlText – url for java
altText1 – alternative text before link
altText2 – alternative text after link
- OUTPUT
outLink – clickable link
- parseBoolean(str, tokens, allowedElementChars)[source]¶
Parses a Boolean logic statement
- USAGE
[elements, newRule] = parseBoolean (str, tokens, allowedElementChars)
- INPUTS
str – Input string or cell array of boolean statements
tokens – Allowed operators in boolean statements (optional, default ‘()&|~’)
allowedElementChars – Allowed characters in elements of the statement
- OUTPUTS
elements – Non-operator elements
newRule – New rule translated to element numbers
rxnGeneMat – If str is a cell array, rxnGeneMat is the normal COBRA rxnGeneMat (a matrix with rows corresponding to reactions, and columns corresponding to genes).
- parseCobraVarargin(varArgIn, optArgin, defaultValues, validator, problemTypes, keyForSolverParams, emptyForDefault)[source]¶
Parse varargin for a COBRA function to obtain function inputs and cobra-problem-specific parameters. Used to handle inputs for functions supporting all of (i) direct argument inputs, (ii) name-value inputs, and (iii) parameter structure inputss
- USAGE
[funParams, cobraParams, solverVaragin] = parseCobraVarargin (optArgin, defaultValues, validator, problemTypes, keyForSolverParams, emptyForDefault)
- INPUTS
varArgIn – cell array of additional inputs for the function (= varargin in that function)
optArgin – cell array of strings for the optional arguments of a function
defaultValues – cell array of default values corresponding to optArgin
validator – cell array of function handles for validating the inputs corresponding to optArgin Will return error if the inputs do not return true from the validator
- OPTIONAL INPUTS
problemTypes – cell array of cobra supported optimization problems needed to solve in the function (default {‘LP’, ‘MILP’, ‘QP’, ‘MIQP’})
keyForSolverParams – the keyword for solver-specific parameter structure in optArgin if solver-specific parameter structure is an explicit optional input argument in optArgin (which is NOT encouraged when writing cobra functions because the solver-specific parameter structure as a convention among cobra functions can be inputted without keyword and is handled this way in this parsing process). If this is the case, provide the keyword and it will be handled (default ‘’). Note that in this case the solver parameter structure will not be included in funParams but instead integrated in solverVaragin
emptyForDefault – True to interpret empty inputs for positional arguments as using the default values (default false)
- OUTPUTS
funParams – cell array of optional argument inputs corresponding to optArgin. Can be assigned in the function easily by [argIn1, argIn2, …] = deal(funParams{:})
cobraParams – structure containing parsed cobra parameters for each problem type in problemTypes, to be used within the cobra function being written.
solverVaragin – structure containing parsed cobra-problem-specific addition inputs as a cell array for each problem type in problemTypes, with the first cell being the solver-specific parameter structure e.g., solverVarargin.LP contains the additional inputs for solveCobraLP, with solverVarargin.LP{1} being the solver-specific parameter structure, called as solveCobraLP(LPproblem, solverVarargin.LP{:})
- parseGPR(grRuleString, currentGenes, preparsed, positions)[source]¶
Convert a GPR rule in string format to a rule in logic format. We assume the following properties of GPR Rules: 1. There are no genes called “and” or “or” (in any capitalization). 2. A gene name does not contain any of the following characters: (),{},[],|,& and no whitespace. 3. The general format of a GPR is: Gene1 or Gene2 and (Gene3 or Gene4) 4. ‘and’ and ‘or’ operators as well as gene names have to be followed and preceded by either a whitespace character or a opening or closing bracket, respectively. Gene Names can also be at the beginning or the end of the string.
- USAGE
[ruleString, totalGeneList, newGeneList] = parseGPR (grRuleString, currentGenes, preparsed)
- INPUT
grRuleString – The rule string in textual format.
currentGenes – Names of all currently known genes. Encountered genes (column cell Array of Strings)
- OPTIONAL INPUT
preparsed – Whether the sring inserted into the function was preparsed or not. If provided, it is assumed, that currentGenes ONLY contains the genes in this rule AND that positions is the actual position of each gene to be used for the rule.
positions – Only used when preparsed is true. positions(ismember(currentGenes,gene)) will become the number used for that gene in the rule.
- OUTPUT
ruleString – The logical formula representing the grRuleString. Any position refers to the totalGeneList returned.
totalGeneList – The concatenation of currentGenes and newGeneList
newGeneList – A list of gene Names that were not present in currentGenes
- parseMetNames(metNames)[source]¶
Figures out the base metabolite names and compartments for each metabolite
- USAGE
[baseMetNames, compSymbols, uniqueMetNames, uniqueCompSymbols] = parseMetNames (metNames)
- INPUT
metNames – List of metabolite names
- OUTPUTS
baseMetNames – List of met names without compartment symbol
compSymbols – Compartment symbols for each metabolite
uniqueMetNames – Unique metabolite names (w/o comp symbol)
uniqueCompSymbols – Unique compartment symbols
Metabolite names should describe the compartment assignment in the form “metName[compName]”
- parseRxnFormula(formula)[source]¶
Parses reaction formula into a list of metabolites and a list of S coefficients
- USAGE
[metaboliteList, stoichCoeffList, revFlag] = parseRxnFormula (formula)
- INPUT
formula – Reaction formula, may contain symbols ‘+’, ‘->’, ‘<=>’ in addition to stoichiometric coefficients and metabolite names examples: ‘0.01 cdpdag-SC[m] + 0.01 pg-SC[m] -> 0.01 clpn-SC[m] + cmp[m] + h[m]’ (irreversible reaction) ‘cit[c] + icit[x] <=> cit[x] + icit[c] ‘ (reversible reaction) If no stoichiometric coefficient is provided, it is assumed to be = 1. Reaction formula should be a string, not a cell array
- OUTPUTS
metaboliteList – Cell array with metabolite names
stoichCoeffList – List of S coefficients
revFlag – Indicates whether the reaction is reversible (true) or not (false)
Example
formula = ‘0.01 cdpdag-SC[m] + 0.01 pg-SC[m] -> 0.01 clpn-SC[m] + cmp[m] + h[m]’
[metaboliteList, stoichCoeffList, revFlag] = parseRxnFormula(formula)
%metaboliteList = ‘cdpdag-SC[m]’ ‘pg-SC[m]’ ‘clpn-SC[m]’ ‘cmp[m]’ ‘h[m]’ %stoichCoeffList = -0.01 -0.01 0.01 1 1 %revFlag = false
- preparseGPR(grRules)[source]¶
preparse model.grRules before parsing the remaining part and transforming model.grRules into model.rules
- USAGE
preParsedGrRules = preparseGPR (grRules)
- INPUT
grRules – grRules cell or single grRule
- OUTPUT
preParsedGrRules – preparsed grRules cell or single grRule
- reporterMets(model, data, nRand, pValFlag, nLayers, metric, dataRxns, inclExchFlag)[source]¶
Implements the reporter metabolites algorithm by Patil & Nielsen
- USAGE
[normScore, nRxnsMet, nRxnsMetUni, rawScore] = reporterMets (model, data, nRand, pValFlag, nLayers, metric, dataRxns)
- INPUTS
model – Metabolic network reconstruction structure
data – Data matrix/vector
nRand – Number of randomizations
pValFlag – The data are p-values and should be converted to z-scores
nLayers – Number of reaction layers around each metabolite considered (default = 1)
metric – Metric used to evaluate score (‘default’,’mean’, ‘median’, ‘std’, ‘count’)
dataRxns – Reaction list for the data file (if different from the model reactions)
inclExchFlag – Flag for exchange reactions
- OUTPUTS
normScore – Normalized scores for each metabolite
nRxnsMet – Number of reactions connected to each metabolite
nRxnsMetUni
rawScore – Raw unnormalized scores
- selMatrix(selVec)[source]¶
Create selection matrix from a selection vector
- USAGE
selMat = selMatrix (selVec)
- INPUT
selVec – selection vector
- OUTPUT
selMat – selection matrix
Example
selVec = [1 0 0 1 0 0] % returns selMat = [1 0 0 0 0 0
0 0 0 1 0 0]
% For reversible selections selVec = [1 0 0 1 -1 0] % returns selMat = [1 0 0 0 0 0
0 0 0 1 -1 0]
- setWorkerCount(nworkers)[source]¶
configures the number of (parallel) workers
- USAGE
setWorkerCount (nworkers)
- INPUT
nworkers – Number of workers in the pool
Note
Requires the Parallel computing toolbox
- splitString(string, delimiter)[source]¶
Splits a string Perl style
- USAGE
fields = splitString (string, delimiter)
- INPUTS
string – Either a single string or a cell array of strings
delimiter – Splitting delimiter
- OUTPUT
fields – Either a single cell array of fields or a cell array of cell arrays of fields
Default delimiter is ‘s’ (whitespace) Delimiters are perl regular expression style, e.g. ‘|’ has to be expressed as ‘|’ Results are returned in the cell array fields
- translateList(list, trList1, trList2)[source]¶
Translate a list of identifiers (either numerical or cell array) using a dictionary
- USAGE
list = translateList (list, trList1, trList2)
- INPUTS
list – original list
trList1 – list of elemets to be changed
trList2 – list of elements to be changed into
- OUTPUTS
list – list after changes
Example
% Define original list list = {‘a’, ‘b’, ‘c’}
% Define dictionary trList1 = {‘b’, ‘c’} trList2 = {‘B’, ‘C’}
newList = translateList(list, trList1, trList2);
% returns newList = {‘a’, ‘B’, ‘C’};