Old

optimizeCardinalityOld(problem, param)[source]

DC programming for solving the cardinality optimization problem The l0 norm is approximated by a capped-l1 function.

\(min c'(x, y, z) + lambda_0*||k.*x||_0 + lambda_1*||x||_1 . - delta_0*||d.*y||_0 + delta_1*||y||_1\) s.t. \(A*(x, y, z) <= b\) \(l <= (x,y,z) <= u\) \(x in R^p, y in R^q, z in R^r\)

USAGE

solution = optimizeCardinality (problem, param)

INPUT

problem – Structure containing the following fields describing the problem:

  • .p - size of vector x OR a size(A,2) x 1 boolean indicating columns of A corresponding to x (min zero norm).

  • .q - size of vector y OR a size(A,2) x 1 boolean indicating columns of A corresponding to y (max zero norm).

  • .r - size of vector z OR a `size(A,2) x 1`boolean indicating columns of A corresponding to z .

  • .A - s x size(A,2) LHS matrix

  • .b - s x 1 RHS vector

  • .csense - s x 1 Constraint senses, a string containing the constraint sense for each row in A (‘E’, equality, ‘G’ greater than, ‘L’ less than).

  • .lb - size(A,2) x 1 Lower bound vector

  • .ub - size(A,2) x 1 Upper bound vector

  • .c - size(A,2) x 1 linear objective function vector

OPTIONAL INPUTS
  • problem – Structure containing the following fields describing the problem: * .osense - Objective sense for problem.c only (1 means minimise (default), -1 means maximise) * .k - p x 1 OR a size(A,2) x 1 strictly positive weight vector on minimise ||x||_0 * .d - q x 1 OR a size(A,2) x 1 strictly positive weight vector on maximise ||y||_0 * .lambda0 - trade-off parameter on minimise ||x||_0 * .lambda1 - trade-off parameter on minimise ||x||_1 * .delta0 - trade-off parameter on maximise ||y||_0 * .delta1 - trade-off parameter on minimise `||y||_1

  • param – Parameters structure: * .printLevel - greater than zero to recieve more output * .nbMaxIteration - stopping criteria - number maximal of iteration (Default value = 100) * .epsilon - stopping criteria - (Default value = 1e-6) * .theta - starting parameter of the approximation (Default value = 0.5)

    For a sufficiently large parameter , the Capped-L1 approximate problem and the original cardinality optimisation problem are have the same set of optimal solutions

    • .thetaMultiplier - at each iteration: theta = theta*thetaMultiplier

    • .eta - Smallest value considered non-zero (Default value feasTol*1000)

optimizeCardinality_RF(problem, params)[source]

DC programming for solving the weighted cardinality optimization problem

In general, the l0 norm is approximated by capped-l1 function. \(min c'(x, y, z) + diag(lambda)*||x||_0 - diag(delta)*||y||_0\) s.t. \(A*(x, y, z) <= b\) \(l <= (x,y,z) <= u\) \(x in R^p, y in R^q, z in R^r\)

In the particular case where the problem is sparse minimisation, then a variety of approximations to the ‘l0’ norm are available. \(min diag(lambda)*||x||_0 s.t. :math:\) \(l <= (x,y,z) <= u\) \(x in R^p, y in R^q, z in R^r\)

USAGE

solution = optimizeCardinality (problem, params)

INPUT

problem – Structure containing the following fields describing the problem:

  • .p - size of vector x

  • .q - size of vector y

  • .r - size of vector z

  • .c - (p+q+r) x 1 linear objective function vector

  • .lambda - trade-off parameter of ||x||_0
    • scalar, or size of vector x

  • .delta - trade-off parameter of ||y||_0
    • scalar, or size of vector y

  • .A - s x (p+q+r) LHS matrix

  • .b - s x 1 RHS vector

  • .csense - s x 1 Constraint senses, a string containting the constraint sense for each row in A (‘E’, equality, ‘G’ greater than, ‘L’ less than).

  • .lb - (p+q+r) x 1 Lower bound vector

  • .ub - ``(p+q+r) x 1` Upper bound vector

OPTIONAL INPUTS

params – Parameters structure:

  • .nbMaxIteration - stopping criteria - number maximal of iteration (Default value = 1000)

  • .epsilon - stopping criteria - (Defautl value = 10e-6)

  • .theta - parameter of the approximation (Default value = 2)

OUTPUT

solution – Structure containing the following fields:

  • .x - p x 1 solution vector

  • .y - q x 1 solution vector

  • .z - r x 1 solution vector

  • .stat - status

    • 1 = Solution found

    • 2 = Unbounded

    • 0 = Infeasible

    • -1= Invalid input

optimizeCardinality_old(problem, params)[source]

DC programming for solving the cardinality optimization problem The l0 norm is approximated by capped-l1 function. \(min c'(x, y, z) + lambda*||x||_0 - delta*||y||_0\) s.t. \(A*(x, y, z) <= b\) \(l <= (x,y,z) <= u\) \(x in R^p, y in R^q, z in R^r\)

USAGE

solution = optimizeCardinality (problem, params)

INPUT

problem – Structure containing the following fields describing the problem:

  • .p - size of vector x

  • .q - size of vector y

  • .r - size of vector z

  • .c - (p+q+r) x 1 linear objective function vector

  • .lambda - trade-off parameter of ||x||_0

  • .delta - trade-off parameter of ||y||_0

  • .A - s x (p+q+r) LHS matrix

  • .b - s x 1 RHS vector

  • .csense - s x 1 Constraint senses, a string containting the constraint sense for each row in A (‘E’, equality, ‘G’ greater than, ‘L’ less than).

  • .lb - (p+q+r) x 1 Lower bound vector

  • .ub - ``(p+q+r) x 1` Upper bound vector

OPTIONAL INPUTS

params – Parameters structure:

  • .nbMaxIteration - stopping criteria - number maximal of iteration (Default value = 1000)

  • .epsilon - stopping criteria - (Defautl value = 10e-6)

  • .theta - parameter of the approximation (Default value = 2)

OUTPUT

solution – Structure containing the following fields:

  • .x - p x 1 solution vector

  • .y - q x 1 solution vector

  • .z - r x 1 solution vector

  • .stat - status

    • 1 = Solution found

    • 2 = Unbounded

    • 0 = Infeasible

    • -1= Invalid input

optimizeCardinality_weighted_Minh(problem, params)[source]

DC programming for solving the cardinality optimization problem The l0 norm is approximated by capped-l1 function. :math:`min c’(x, y, z) + lambda_0*||k.*x||_0 - delta_0*||d.*y||_0

  • lambda_1*||x||_1 + delta_1*||y||_1`

s.t. \(A*(x, y, z) <= b\) \(l <= (x,y,z) <= u\) \(x in R^p, y in R^q, z in R^r\)

USAGE

solution = optimizeCardinality (problem, params)

INPUT

problem – Structure containing the following fields describing the problem:

  • .p - size of vector x

  • .q - size of vector y

  • .r - size of vector z

  • .c - (p+q+r) x 1 linear objective function vector

  • .lambda_0 - trade-off parameter of ||x||_0

  • .delta_0 - trade-off parameter of ||y||_0

  • .lambda_1 - trade-off parameter of ||x||_1

  • .delta_1 - trade-off parameter of ||y||_1

  • .k - p x 1 strictly possitive weight vector of x

  • .d - q x 1 strictly possitive weight vector of y

  • .A - s x (p+q+r) LHS matrix

  • .b - s x 1 RHS vector

  • .csense - s x 1 Constraint senses, a string containting the constraint sense for each row in A (‘E’, equality, ‘G’ greater than, ‘L’ less than).

  • .lb - (p+q+r) x 1 Lower bound vector

  • .ub - ``(p+q+r) x 1` Upper bound vector

OPTIONAL INPUTS

params – Parameters structure:

  • .nbMaxIteration - stopping criteria - number maximal of iteration (Default value = 1000)

  • .epsilon - stopping criteria - (Defautl value = 10e-6)

  • .theta - parameter of the approximation (Default value = 2)

OUTPUT

solution – Structure containing the following fields:

  • .x - p x 1 solution vector

  • .y - q x 1 solution vector

  • .z - r x 1 solution vector

  • .stat - status

    • 1 = Solution found

    • 2 = Unbounded

    • 0 = Infeasible

    • -1= Invalid input