New¶
- createGroupIncidenceMatrix(model, trainingModel, param)[source]¶
- USAGE
trainingModel = createGroupIncidenceMatrix (model, trainingModel)
INPUTS: model: model.mets m x 1 metabolite ids model.inchi.nonstandard m x 1 cell array of nonstandard InChI
trainingModel: trainingModel.S: p x n stoichiometric matrix of training data trainingModel.mets p x 1 metabolite abbreviations trainingModel.rxns n x 1 reaction abbreviations trainingModel.metKEGGID: p x 1 cell array of metabolite KEGGID trainingModel.inchi.nonstandard: p x 1 cell array of nonstandard InChI trainingModel.mappingScore
OPTIONAL INPUT: trainingModel.cids_that_dont_decompose cid of kegg compounds that are not decomposable with param.fragmentationMethod=’manual’;
OUTPUT: combinedModel: combinedModel.S: k x n stoichiometric matrix of training padded with zero rows for metabolites exclusive to test data combinedModel.drG0: n x 1 experimental standard reaction Gibbs energy combinedModel.drG0_prime: n x 1 experimental standard transformed reaction Gibbs energy combinedModel.T: n x 1 temperature combinedModel.I: n x 1 ionic strength combinedModel.pH: n x 1 pH combinedModel.pMg: n x 1 pMg combinedModel.G: k x g group incidence matrix combinedModel.groups: g x 1 cell array of group definitions combinedModel.trainingMetBool k x 1 boolean indicating training metabolites in G combinedModel.testMetBool k x 1 boolean indicating test metabolites in G combinedModel.groupDecomposableBool: k x 1 boolean indicating metabolites with group decomposition combinedModel.inchiBool k x 1 boolean indicating metabolites with inchi combinedModel.test2CombinedModelMap: m x 1 mapping of model.mets to combinedModel.mets
- getGroupVectorFromInchi(inchi, printLevel)[source]¶
- USAGE
group_def = getGroupVectorFromInchi (inchi, silent, debug)
- INPUTS
inchi
silent
debug – 0: No verbose output, 1: Progress information only (no warnings), 2: Progress and warnings
- OUTPUT
group_def
- getMappingScores(model, trainingModel)[source]¶
Finds the best mapping between the model metabolites and the training model metabolites, the higher the confidence score, the more reliable the mapping
- USAGE
mappingScore = getMappingScores (model, trainingModel)
- INPUTS
model – model in a COBRA structure *.mets *.metKEGGID *.model.inchi.standard *.model.inchi.standardWithStereo *.model.inchi.standardWithStereoAndCharge
trainingModel – training model in a COBRA structure *.mets *.metKEGGID *.inchi.standard *.inchi.standardWithStereo *.inchi.standardWithStereoAndCharge
- OUTPUT
mappingScore – nMet x nTrainingMet sparse matrix giving best mapping
- regulariseGroupIncidenceMatrix(combinedModel, printLevel)[source]¶
within the combinedModel analyse the similar metabolites (having the same group decomposition vector) and the duplicates (also the same InChI)
INPUT combinedModel printLevel
OUTPUT groupM nMet xnTrainingMet x nTrainingMet logical matrix, true if metabolite is a duplicate inchiM nTrainingMet x nModelMet logical matrix, true if metabolite is a duplicate