New

checkForMissingStereo(model, trainingModel)[source]
USAGE

missingStereo = checkForMissingStereo (model, trainingModel)

INPUTS
  • model – structure with fields:

    • .mets

    • .inchi.standard

    • .inchi.standardWithStereo

  • trainingModel – structure with fields:

    *.inchi.standard *.inchi.standardWithStereo

OUTPUTS

missingStereo

createTrainingModel(trainingModel, trainingMolFileDir, forceMolReplacement, printLevel)[source]

create the training model, or update it with additional data

OPTIONAL INPUTS: trainingModel: molFileDir: directory of the mol files forceMolReplacement: force the replacement of the existing mol files

with newly acquired ones

printLevel:

OUTPUTS

trainingModel – trainingModel structure with following additional fields: * .mets m x 1 metabolite abbreviations * .rxns n x 1 reaction abbreviations * .metKEGGID m x 1 trainingModel.cids; * .metChEBIID m x 1 ChEBI identifier of the metabolite. * .inchi - Structure containing four m x 1 cell array’s of

IUPAC InChI strings for metabolites, with varying levels of structural detail.

  • .inchi.standard: m x 1 cell array of standard inchi

  • .inchi.standardWithStereo: m x 1 cell array of standard inchi with stereo

  • .inchi.standardWithStereoAndCharge: m x 1 cell array of standard inchi with stereo and charge

  • .inchi.nonstandard: m x 1 cell array of non-standard inchi

  • .inchiBool m x 1 true if inchi exists

  • .molBool m x 1 true if mol file exists

  • .compositeInchiBool m x 1 true if inchi is composite

driver_addChemoinfoToTrainingModel[source]

Generate database

driver_createTrainingModel[source]

Cretate a validated training model for thermochemical estimation Author: Ronan Fleming, German Preciat, Leiden University Reviewers: INTRODUCTION

PROCEDURE Configure the environment All the installation instructions are in a separate .md file named vonBertalanffy.md in docs/source/installation

With all dependencies installed correctly, we configure our environment, verfy all dependencies, and add required fields and directories to the matlab path.

loadTrainingData(param)[source]

Generates the structure that contains all the training data needed for Component Contribution.

USAGE

trainingModel = loadTrainingData (formation_weight)

INPUT

formation_weight – the relative weight to give the formation energies (Alberty’s data) compared to the reaction measurements (TECRDB)

OUTPUT

trainingModel – structure with data for Component Contribution *.S m x n stoichiometric matrix of training data *.cids: m x 1 compound ids *.dG0_prime: n x 1 *.T: n x 1 *.I: n x 1 *.pH: n x 1 *.pMg: n x 1 *.weights: n x 1 *.balance: n x 1 *.cids_that_dont_decompose: k x 1 ids of compounds that do not decompose

prepareTrainingData(model, printLevel, params)[source]

Given a standard COBRA model, adds thermodynamic data to it using the Component Contribution method

USAGE

training_data = prepareTrainingData (model, printLevel, params)

INPUT

model – COBRA structure

OPTIONAL INPUTS
  • printLevel – verbose level, default = 0

  • params.use_cached_kegg_inchis

  • params.use_model_pKas_by_default

  • params.uf – maximum uncertainty

OUTPUTS

trainingData – structure with the following fields:

  • .S - the stoichiometric matrix of measured reactions

  • .G - the group incidence matrix

  • .dG0 - the observation vector (standard Gibbs energy of reactions)

  • .weights - the weight vector for each reaction in S

  • .Model2TrainingMap

reverseTransformTrainingData(trainingModel, use_model_pKas_by_default, model)[source]

Calculate the reverse transform for all reactions in trainingModel.

INPUT trainingModel

OPTIONAL INPUT use_model_pKas_by_default model

OUTPUT trainingModel.DrG0: n x 1 standard Gibbs energy